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Computational and experimental study of a captive 
annular eddy 
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Institute of Hydraulic Research, The University of Iowa, Iowa City 

(Received 27 June 1966) 

Results of calculations and experiments on the flow of a viscous liquid through an 
axisymmetric conduit expansion are reported. The streamlines and vorticity 
contours are presented as functions of the Reynolds number of the flow. The 
dynamic interaction between the main flow and the captive eddy between it and 
the walls is analysed, and it is concluded that, for laminar flow, the main role of 
the eddy is that of shaping the flow with a rather small energy exchange. 

1. Introduction 
In  a previous investigation by Hung & Macagno (1966), laminar eddies in the 

corners of a two-dimensional conduit expansion have been studied using a 
computational simulation based on discretized forms of the vorticity-transport 
equation. No quantitative experimental verification was attempted then because, 
as is well known, it is practically impossible to produce two-dimensional estab- 
lished laminar flows with negligible distortion due to side-wall effects. In  the 
present investigation, laminar flow in an axisymmetric confined flow expansion 
has been studied both computationally and experimentally. 

The laminar flow in an abrupt conduit expansion is characterized by a geo- 
metric condition that imposes separation even for very low Reynolds numbers; 
as a matter of fact, if was found by using the computational model that a zone 
of separation would exist even for creeping flow. This could not be verified experi- 
mentally, but the trend of both computational and experimental flows, as the 
Reynolds number was made smaller and smaller, appeared to confirm this result. 
The same result was obtained in the study of the two-dimensional abrupt conduit 
expansion. One should remember, in this connexion, that in the Jeffery-Hamel 
flows counterflow always occurs, no matter how small the Reynolds number, if 
the angle between walls is 180". In a circular conduit with an expansion, the flow 
pattern may be looked upon as if composed of a main stream that has generated 
an annular eddy between itself and the walls and reached a dynamic equilibrium 
that keeps the annular eddy stationary, captive between the flow that drives it 
and the walls that tend to slow it down. 

The computational simulation was accomplished in two different manners. In  
the first, which will be called the steady approach, the equationsfor viscous steady 
flow were utilized in a finite-difference form for which an iterative numerical 
scheme was devised to be used in an electronic computer. In  the second, or 
unsteady approach, the local acceleration terms were preserved, and essentially 
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the same technique of discretization of the differential equations was employed. 
The procedure followed in the steady approach was to start with a roughly 
approximate flow pattern for a very low Reynolds number upon which numerical 
iteration was applied until the finite difference equations were satisfied. Once an 
acceptable flow pattern was available for a certain Reynolds number, it  would 
be used for calculation with a slightly different Reynolds number, and so on. In  
the unsteady approach, a flow pattern already known from the steady approach, 
would be used as the initial one for calculations relative to a quite different 

B1 B B2 
FIGTJFCE 1. Definition sketch. 

Reynolds number. It was thought that this process, equivalent to a sudden 
change in viscosity without varying the rate of flow, would be a smooth one in 
which the inertia terms would play a stabilizing role. This conjecture proved to 
be correct and the second approach was found to be more stable, ceteris paribus, 
than the steady approach. In  other ways, this has been known to be true, for some 
time already, to other researchers dealing with finite-difference schemes (Harlow 
BE Fromm 1964; Crocco 1964; Pearson 1965). 

The first phase of the investigation consisted in the calculation of the flow and 
vorticity patterns for different Reynolds numbers. In  the second phase, experi- 
mental results were obtained and found to agree satisfactorily with those of the 
computational model. The final phase of the study was then devoted to the 
calculation of dynamical variables of the flow as well as to the verification of the 
balances of momentum and impulse, and work and energy, in the computational 
model. It was the intent of the authors, in this third phase, to provide supplement- 
ary information on the dynamic characteristics of an axisymmetric zone of 
separation in laminar flow, including the quantitative evaluation of the relative 
importance of the different terms of the momentum and energy equations. Also 
in view was the interplay between the main flow and the captive annular eddy 
surrounding it. 

The abrupt circular-conduit expansion studied had a diameter ratio of 2 : 1 as 
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shown in the definition sketch (figure 1). Also shown in the sketch are the para- 
bolic velocity distribution of the Poiseuille flow in the upstream portion of the 
conduit, and the square mesh used for the finite-difference scheme. 

2. Basic equations 

Stokes equations in cylindrical Go-ordinates are 
For an axisymmetric confined flow of an incompressible fluid, the Navier- 

( 1 )  

(3 )  

at+"-+w- au au au = --+- ap 1 ( a 2 ~  -+--+--- 1 au a2u u )  

at ar ax 

ar a x  ar R ar2 r ar ax2 r2 ' 

aw aw aw -+u-+w-= 

where u, w, p ,  t denote the velocity components in the radial and the axial 
directions, r,  z, the pressure, and the time, respectively. The Reynolds number R 
is based on the upstream diameter Do and the mean velocity W,. All the quantities 
in (1) and (2) are dimensionless with reference to Do and Wo (figure 1). The 
equation of continuity is 

au aw -+-+- = 0. 
ar az r 

The only non-zero vorticity component is 

(3) 

By elimination of the pressure from (1) and (2), the vorticity transport equation 

results. If the Stokes stream function $is introduced, (4) and ( 5 )  can be expressed 
as 

( 7 )  

For the calculation of the pressure, once the functions 7 and 9 have been 
determined, the following two integrals of the Navier-Stokes equations can be 
used : 
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where V 2  = u2 + v2. The work-energy equation, as was used in this investigation, 
can be expressed in the following form: 

a a wr 
ar 82 r +- (w7)+- (?AT)+--. 

In  this equation, 7 represents the dimensionless shearing stress 

The physical meaning of the terms of (10) are, from left to right, convection of 
kinetic energy, dissipation of energy, work done by pressure, work done by 
normal viscous stresses, and work done by tangential viscous stresses. 

3. Finite-difference equations 
For a given system of differential equations, a multiplicity of different sets of 

difference equations can be formed, and, in this sense, one can consider each of 
the finite-difference schemes as a distinct simulation of the differential system, or, 
as a special simulation of the flow represented so accurately by the Navier-Stokes 
equations. The well-known method of relaxation by Southwell (1940) has been 
widely applied in engineering and in science. A similar technique, the method of 
squares, was developed by Thom & Apelt (1961). In  the latter method, the 
function is subject to an iterative process, while in the former one deals with the 
residues of the finite-difference equations. Thorn’s techniques are more con- 
venient for calculations with the digital computers, because they save computer 
storage. 

(7) and (6) were written on discrete form, or discretized, by means of common 
finite-difference formulas and from them the following two expressions were 
obtained for the vorticity and the stream function: 

where the subscripts i, j correspond to the x ,  r co-ordinates, and the superscript k 
denotes the iterative index; h is the dimensionless mesh size, h,/D,. 
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From experience gained by studying two-dimensional flows, it was already 
known that a parabolic velocity distribution could be prescribed over a section 
located a t  a short distance upstream from the conduit expansion. For the 
downstream-end section of the region selected for the calculation, the following 
two extrapolation formulas, derived by Hung (1966), were utilized: 

Because one works with the stream and the vorticity functions together, not 
only the non-slip condition 

must be established for the fixed boundaries, but also expressions for the vorticity 
are necessary. Through expansion of the stream function $ in Taylor series, the 
following expression is obtained: 

a$pr = o, a $ p z  = 0, (16 )  

If one takes into account ( 6 )  and ( l 6 ) ,  one can find the expressions 

for the derivatives of the stream function on the wall parallel to the z-axis. 
Thus (17 )  can be written as 

If one uses again a Taylor series expansion, the following expression can be 

Substitution of (20) into (19) leads to 

. .  
For steady flow, (7) gives for a point like B (figure 1) 

If  use is made of (21 )  and (22 )  and of a forward 3-point formula for (th,J/8r)B, the 
following expression for the vorticity a t  B can be derived:, 

h3 h4 h2rB)-' q B =  -+--- 
(12  24rB 3 
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This formula was also applied to the entrant corner, because separation makes 
the flow there nearly parallel to the z-axis. For the portion of the conduit wall 
parallel to the r-axis the boundary vorticity can be expressed by 

The iteration was continued until the following two conditions were satisfied 

( 2 5 )  k+10 - 
192,j $ t , j l / $ O  G 0~00004, ~ 7 ~ J 1 0 - ~ : , j ~ / ~ ~ l l ~  G 0.0001, 

in which represents the discharge divided by 2n and q0 the value of the wall 
vorticity at the inlet. 

The time-dependent equation ( 7 )  used in the unsteady approach can be 
discretized by means of central-difference formulas, and from it the following 
expression of the vorticity can be obtained: 

After one computes the vorticity rn+', a t  t = (n + 1) 6t, from the values of 9 and 7 
at two preceding times, the corresponding stream function can be calculated, by 
iterative operations, from 

The next step is to calculate the boundary vorticity for t = (n+ 1) 6t according 
to the procedure indicated in the following. It is, a t  first, considered that the term 

in (21) is negligible, and the vorticity on the wall parallel to the z-axis is obtained 
from 

Similarly, for the wall parallel to the r-axis, one obtains 
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Once all the boundary values have been calculated, a better set of values can be 
evaluated, through iteration, from 

The first of these two expressions for the vorticity at a point B was obtained by 
replacing a2y/ar2 and a2q/az2 in (21) by their finite-difference expressions. The 
second was derived in a similar fashion. The vorticity on the concave corner was 
set equal to zero, and at the adjacent points (23) and (24) were used; only on 
these three boundary points was the iteration procedure not applied. This kind 
of boundary treatment proved to be satisfactory in a related study of flow 
suddenly accelerated from rest in a two-dimensional conduit expansion. 

4. Previous verification of the computational model 
As a means of verifying the accuracy of the difference scheme set up for this 

investigation and of testing its computational stability, the system of difference 
equations for the flow and for the boundary conditions was applied to a dis- 
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FIGURE 2. Stability of numerical solutions for steady axisymmetric flow. Flow with separa- 
tion: 0, divergence; m, convergence. Disturbed uniform flow: 0, four-way iteration; 
0, one-way iteration. 

turbed uniform flow obtained by altering the known values of the vorticity in a 
Poiseuille uniform flow in a certain regular pattern; i.e. by increasing and 
decreasing the vorticity in a given proportion at alternate points. This disturbed 
distribution of the vorticity was adopted as a condition initially existing in the 
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fluid, and the calculations were run in the electronic computer according to the 
general programme for the flow in the conduit expansion. Were the system com- 
putationally unstable, it  was reasoned, the disturbed flow would fail to come 
back to the original uniform flow; were the system stable, but still convergent to 
a different solution, this would also be discovered. Figure 2 shows results of these 
tests and the slight influence of sweeping the field in different ways during the 
iteration. Also in the same figure are shown results obtained for the flow through 
the conduit expansion. They confirm the expectancy that the disturbed uniform 

rlD0 

D,lh, R e k t 
16 20 0.1 20 
16 20 0.1 60 
16 20 0.1 100 
32 79 0-5 32 
32 79 0.5 128 

Exact values of @ 

0 0.023799 0.070097 
0 0.023780 0*070098 
0 0.023780 0.070098 
0 0.024024 0.070401 
0 0.023897 0.070263 

0 0.023925 0.070312 

Q 

0.109718 
0.1097 18 
0.109718 
0.109801 
0.109831 

0.109863 

0 

0.125000 
0.125000 
0.125000 
0-125000 
0-125000 

0*125000 

r 
r -A > 

16 20 0.1 20 7.937101 5.958431 3.979629 1.993172 0 
16 20 0-1 60 7.937226 5.958553 3.9'79673 1.993182 0 
16 20 0.1 100 7.937226 5.958553 3.979673 1-993182 0 
32 79 0.5 32 8.049248 5.999148 3.994859 1.925871 0 
32 79 0.5 128 7.982371 5.991121 3.985256 1.999934 0 

Exact values of T,I 8.000000 6.000000 4.000000 2.000000 0 

Verification of the computational scheme by calculating Poiseuille flow in a circular tube 
starting from an initial distribution of vorticity disturbed by alternately applied factors 
(1 f e) ; k is the index of iteration. 

TABLE 1. Numerical solutions of Poiseuille flow in a circular pipe. 

flow would predict with reasonable accuracy the behaviour of the computational 
model for non-uniform flow, at least for cases in which the non-uniformity is not 
extreme to the point of disrupting the flow much more than the purposely 
introduced disturbances of the flow in the uniform conduit. To convey a numerical 
impression of the indications obtained from the technique of disturbing the 
uniform flow, table 1, which is self-explanatory, is presented. 

5. Results of the computations 
A series of flow patterns in the conduit expansion is presented in figures 3 and 4 

for several Reynolds numbers from a vanishingly small value up to 70. The values 
of the dimensionless stream and vorticity functions are given in two of the dia- 
grams; for the other four, the same values apply unless otherwise indicated. As 
in the case of two-dimensional flow, a small corner eddy was found for creeping 
motion; about the same eddy size but a little higher intensity was also found for 
R = 1. For R = 0, the equation for the stream function becomes E499 = 0 (see 
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R = O  

51 
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C.0050 
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FIGURE 3. Vorticity contours and streamlines obtained by steady approach. 
4- 2 
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-0 005 / * = o  - 0  00125 

FIGURE 4. Vorticity contours and streamlines obtained by steady approach. 
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Milne-Thomson 1950); the authors are not aware of any theoretical result that 
would indicate that in such a case the function $ could not take an extreme value 
in the interior of the flow, and they therefore tend to accept the results of the 
calculations as an indication of the possibility of eddies occurring in creeping 
flow whenever the geometry favours their existence. The vorticity lines shown 
in figures 3 and 4 are stretched in the direction of the flow as the Reynolds 
number becomes larger; it  is obvious that the peak of the vorticity cannot 
coincide with the separation line, because otherwise a contradiction would result 
at the reattachment point, where the vorticity must be zero. In fact, the vorticity 

l 2  3 O'O2O0 

9 

3 

0 
I I I 1 I I 

2 . 5  5 7.5 10 12.5 15 
t 

FIGURE 6. Time variations of the relative eddy length LID,, the relative eddy intensity 
and the relative location of eddy centre L,/D,, for a variation of the Reynolds number from 
100 to 200. 

peak fist moves into the main flow when separation occurs, and then moves 
back to the wall well downstream from the stream-reattachment point. 

The stream and vorticity lines shown in figure 5 for R = 100 and R = 200 were 
obtained using the unsteady approach; for the same mesh size, the steady 
approach would have been unstable. No effort was made in this investigation to 
analyse or test the computational stability of the unsteady approach, but the 
criteria for the two-dimensional flows (Hung & Macagno 1966) were followed and 
the results were satisfactory. The unsteady approach was verified by determining 
the flow pattern for R = 40 for which it was already known through the steady 
approach. The variations of eddy length, eddy intensity and the location of its 
centre during the process of going from R = 100 to R = 200 are shown in figure 6. 

6. Experimental investigation 
The experimental apparatus used for the experiments resulted from a tempor- 

ary adaptation of an oil-circulating unit normally employed for laboratory 
instruction on laminar and turbulent flow (figure 7, upper part). The unit consists 
of an oil reservoir from which a pump impels the oil through a bronze pipe, at  the 
outlet of which it is received in a weighing device; after being weighed, the oil is 
returned to the reservoir. Part of the pipe was replaced by a conduit of the same 
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diameter with an abrupt expansion that had been machined coaxially in a prism 
of transparent material (figure 7 ,  lower part). 

The flow a t  the expansion was observed by means of fine tracers suspended 
in the oil, because it was considered that this would disturb the flow the least and 

l o  r - - - - l o z O  

0 40 80 I20 160 200 
R 

FIGURE 10. Characteristics of the annular eddy as functions of the Reynolds number; LID,, 
relative length; LJD,, relative location of the eddy centre; relative eddy intensity; 
vl/~,, relative maximum vorticity in the backflow region. Steady approach: 8 ,  h = &; 
0, h = >If. Unsteady approach: 0, h = ili. Experiment: VA, photograph; 0, dye. 

provide a visualization of the streamlines that could be recorded photographic- 
ally. The photographic technique employed was very similar to the one developed 
by Macagno at  the Iowa Institute of Hydraulic Research eight years ago (see 
Macagno & Rouse 196 1). The photographic information was supplemented with 
direct visual observation of dyed oil coming into the flow through a series of small 
orifices bored through the walls of the conduit (figure 7 ) .  The dyed filaments 
behaved usually in a deceptive way, but they were very useful in detecting the 
point (or line) of reattachment of the separation streamline; to do this, the rate 
of flow was so adjusted that the separation streamline would meet the wall at  the 
middle orifice of a group of three through which the dyed fluid was being injected. 
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The tracer used was aluminium powder, a small quantity of which was added 
to the oil and distributed uniformly by running the unit for several minutes at 
maximum rate of flow under turbulent conditions. When using the photographic 
technique mentioned above, an axial plane was illuminated and time exposures 
were taken in such a manner that the flow pattern of both the eddy and the main 
flow could be recorded. In  figure 8, the experimentally obtained flow patterns for 
Reynolds numbers of 36 and 4500 are shown; for the latter case, two flow patterns 
are presented; one corresponds to laminar flow and the other to turbulent flow. 
The laminar flow for R = 4500 was not really axisymmetric; a cellular secondary 
flow could be observed through the transparent walls, which resulted in a slow 
helicoidal motion of the tracer particles. The turbulent condition for R = 4500 
was induced by disturbing the flow purposely at the inlet of the pipe. 

0 1 0  1 0  1 0  1 0  1 
FIGURE 11.  Velocity profiles for the component w. 

Comparison between experiment and calculation is shown in figure 9 for three 
Reynolds numbers: 61,101, and 198 for the actual flow, and the slightly different 
60, 100, and 200 for the computationally simulated flow. The relations between 
the kinematic characteristics of stationary eddies and the Reynolds number of 
the flow are shown in figure 10 between 40 and 300, the line for the relative length 
of the eddy LID, is very nearly straight; between 0 and 40 it  curves slightly 
upwards, and it takes a value of LID, = 0.27 a t  R = 0. The experimental values, 
determined from photographic records and from direct observations of the 
direction in which dyed fluid would move, fall quite close to the calculated values. 
The relative location of the centre of the eddy L J D ,  is also represented in 
figure 10; and shows a good agreement between experiment and calculation; a 
straight line fits all points very well. Two other kinematic characteristics appear 
in figure 10; they are the relative eddy intensity, and the ratio of the absolute 
value of the maximum wall vorticity in the backflow region to the boundary 
vorticity on the wall in the upstream uniform flow. The two curves show a similar 
trend and appear to have asymptotic linlits; this should be expected because, 
although the eddy length may tend to grow indefinitely, its relative strength 
should not grow once it becomes long enough to have a central portion over which 
the flow conditions of flow and counterflow become very nearly uniform. 

7. Dynamic characteristics of the flow 
The flow with R = 60 was chosen for calculations of the Bernoulli sum, the 

pressure, the viscous stresses, and the different terms of the momentum and 
energy equations. For this Reynolds number, the relative length of the eddy is not 
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Contour lines for the Bernoulli sum, for R = 60 
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( c )  
FIGURE 12. (a) Vorticity contours and streamlines, for R = 60. ( b )  Variation of the Bernoulli 

along streamlines, for R = 60. ( c )  Contour lines for the Bernoulli sum, for R = 60. 
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too great and the intensity is high enough to constitute an interesting case with 
effective influence of the flow curvature. For these calculations, a dimensionless 
mesh size of & was used, while the basic data relative to 9 and 7 were obtained 
with a mesh size of a%. Velocity diagrams are given for several cross-sections in 
figure 11; it  can be noticed that the relative intensity of the flow in the eddy is 
very small. In  figure 12a, the streamlines and the vorticity contours for R = 60 
are given, while in figure 12b the variation of the Bernoulli sum B along several 
streamlines has been represented; contour lines for B are given in figure 12c. 
Whether the Bernoulli sum increases or decreases in the direction of the flow 
depends on the relative values and signs of the two terms in the right-hand side 
of the following equation: 

where S,  and S2 represent two points on a streamline. The first integral on the 
right side represents the effect of transfer of energy by viscous stresses, while the 
second expresses that of the dissipation of energy. 

The pressure distribution (figure 13 a) shows the expected adverse pressure 
gradient, which goes well beyond the point of reattachment; a t  the downstream 
end, the pressure contours do not seem very satisfactory, but one should bear in 
mind that there the flow is still far from uniform. The three normal viscous 
stresses are given in contour representation in figures 13 b-d, and the contours 
for shearing stresses are given in figure 13e. The numerical sum of the normal 
stresses at all points of the field was verified, because it should be zero according 
to the equation of continuity; it  was found to be less than 10-5 everywhere, 
except in a small region near the point of separation where relatively large errors 
were obtained. The expressions used to evaluate shearing stresses were the 
following : 

r = R-l(q - 2 awl&), r = R-l(2 azL/ax-q). (33) 

The first of these two expressions was applied at the inlet and outlet sections 
and on the normal wall; for the rest of the field, the second formula was used. 

The momentum integral along the conduit was computed to verify the balance 
of momentum flux and forces in the longitudinal direction. As can be seen from 
figure 14, eight subregions were used for evaluating the surface integral in the 
impulse-momentum equation 

where S denotes the total surface of the wall and cross-sections. The last term on 
the right side is zero because of the equation of continuity; therefore, the loss of 
momentum flux is due to the differential pressure force on the cross-sectional 
areas and the shear force on the boundary. The jump in the pressure-force curve 
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represents the drag on the normal wall as evaluated from direct integration of 
the pressure. The residue line shows relatively small values. 

The pointwise verification of the Navier-Stokes equations was carried out with 

L o.oo6 /-------- 0.005 
0.0025 

0~0002 

-0.004 -0.0025 

-0 005 

7;- 

-0.01 
0.015 -_ 0-01 0- 

(4 
FIGURE 13. From a to e:  contours for the pressure p ,  the three normal viscous stresses in the 

directions T, 8, z, and the tangential viscous stress 7, for R = 60. 
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The residues for these equations are shown in figure 15, as r, and r,, respectively. 
The numerical mode1 employed in this research was tested by applying it to a 
uniform Poiseuille axisymmetric flow and it showed larger relative errors than 

1.2 

0.8 

9 
al 

0 

FIGURE 14. Balance of momentum flux and forces along the conduit, for R = 60. 

3.0 

c 
.9 

2.0 % 
P 

0 

FIGURE 15. Residues r, and r,, for R = 60. 

the similar model for plane Poiseuille flow; therefore, it is not surprising that the 
residues shown in figure 15 are also larger than the corresponding values found in 
a previous investigation of two-dimensional conduit expansions (Hung & 
Macagno 1966). 

Figure 16, a to e, shows in contour forms the variation of the five terms of the 
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FIGURE 16. From a to e:  convection of kinetic energy, dissipation of energy, and work 
by pressure, normal stresses and tangential stresses. The diagram f represents the residi 
the work-energy equation. Calculations for R = 60. 

done 
ies of 
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work-energy equation, and in diagram f, the corresponding residues. The rate of 
dissipation of energy was evaluated from the following expressions: 

The second was used along the axis of symmetry, while the first was applied on 
the rest of the field. Along the z-axis, or conduit axis, the rates at which work is 
done by normal and tangential viscous stresses were calculated, respectively, 
with the expressions: 

R-l(2 a2u2/ar2 + a2w2/az2) and 2 ~ ( a ~ / a r ) .  

0.6 

0.4 

0.2 

0 

~ 0.2 

- 0.4 

~~ 0.6 

0,004 

0.002 
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-~ 0.002 

- 0.004 

- 0.006 
0 1 2 3 4 5 

X I D O  

FIGURE 17. Balance and work and energy along the conduit, for R = 0.6 

Within the eddy, the fluid moves very slowly and most of the values of terms 
of the work-energy equation are very small. For instance, the convection and the 
dissipation of energy there are very small, and the obvious conclusion is that the 
role of these eddies is more one of shaping the main flow than one of exchange and 
dissipation of energy. This should also be true of rather long eddies, because the 
ratio of the intensity of the eddy flow and the intensity of the main flow seems to 
tend to a constant value (figure 10). The integrated form of the work-energy 
equation has been used to calculate the values represented in the upper diagram 
of figure 17, for the dissipation of energy, the work done by the pressure, and 
the convection of kinetic energy, which are very approximately in balance. The 
other two terms, the work done by tangential and normal viscous stresses, are 
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very small and had to be represented in the lower diagram at a different scale. 
In  this lower diagram, the residues also appear, and have the same order of 
magnitude as the terms of the work-energy equation plotted there. It can, there- 
fore, be concluded that the integrated form of the work-energy equation can be 
reduced to a simplified form in which the work of the viscous stresses may be 
neglected. 

8. Concluding remarks 
The annular, laminar, captive eddy in a conduit expansion has been studied in 

detail, by means of a computational simulation, for an expansion ratio of 2 : 1 and 
for Reynolds numbers up to 200. Experimentally, the same flow has also been 
observed, and good agreement exists between the calculations and the experi- 
ments. 

The computational model has been operated in two different manners, both 
with explicit forms of the finite-difference scheme utilized, but preserving in one 
the local acceleration terms while eliminating them from the other. For high 
Reynolds numbers, the unsteady approach exhibited a higher computational 
stability, other things being equal. When both models were stable, the numerical 
results were practically coincident. 

The study of the dynamic characteristics of the annular eddy and of the sus- 
taining main flow revealed that the role of the first is principally that of helping 
to shape the second in a streamlined fashion and without much exchange of 
energy. The results of the calculations of dynamic characteristics give an overall 
picture with internal consistency, exhibiting small residues except at a few points 
in which a finer mesh than the ones used should be employed. The interested 
forms of the momentum-impulse and work-energy equations present a very 
satisfactory first-order-of-magnitude balance; it can also be concluded that the 
work-energy relationship in its integrated form is reducible to only three of its 
five terms, because the two terms representing the rate at which work is done by 
viscous stresses are negligibly small. 
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